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Abstract

In drug research and development, pharmaco-
kinetics, which characterizes absorption, dis-
tribution, metabolism, and elimination of the 
drug from the body after its administration in 
animals and humans, plays an important role 
in delineating the dose-response relationship, 
either for toxicity in animal studies or safety 
and efficacy analysis in human clinical trials. 
The following is an overview of the pharma-
cokinetic modeling program (PKMP) devel-
oped to perform data analysis to support drug 
research and development. PKMP is a web-
based commercial program created using the 
open source codes for Java coding language 
and R libraries. The web-based platform 
allows easy and secure access to the program 
using any Internet browser, and the program is 
independent of operating systems, such as 
MacOS or Windows. The program has been 
extensively tested for validation and verifica-
tion of every module for its quality and func-
tionality. Pharmacokinetic, pharmacodynamic, 
statistical analysis, dissolution, IVIVC, simu-
lation, modeling, and reporting are some of its 
main functionalities, allowing for a wide range 
of data analyses to support drug product eval-
uation and development during different 
phases of drug development.

Keywords

Pharmacokinetics · Pharmacodynamics · 
Dissolution · IVIVC · Modeling · Simulation 
· Toxicokinetics · Interspecies scaling · 
Biopharmaceutics · Bioequivalence

1	 �Introduction

The drug development process involves discov-
ery phase, preclinical research, clinical research, 
and regulatory approval for marketing. From start 
to finish, the drug development takes 10–15 years, 
and the average research and development cost is 
estimated to be $2.6 billion [1]. In each phase of 
drug research and development, pharmacokinet-
ics, which characterizes absorption, distribution, 
metabolism, and elimination of the drug from the 
body after its administration in animals and 
humans, plays an important role in delineating 
the dose-response relationship, either for toxicity 
in animal studies or safety and efficacy analysis 
in human clinical trials. Therefore, pharmacoki-
netic data analysis has become an essential part 
in the following key areas of drug development, 
including, but not limited to, lead identification/
optimization, dose-response analysis, bioequiva-
lence analysis of drug products, in vitro–in vivo 
correlations for formulations, dissolution data 
analysis, modeling, and simulations. These anal-
yses are critical in drug development for cost and 
time savings. The generic drug products are cre-
ated to provide medicines at a reduced cost and 
involve drug development based on demonstrat-
ing pharmacokinetic equivalence of systemic 
drug concentrations of generic and innovator 
products. The pharmacokinetic data analysis 
nowadays is performed using commercial soft-
ware packages having a wide range of capabili-
ties for data analysis, visual display, and 
simulations. The following is an overview of the 
pharmacokinetic modeling program (PKMP) 
developed to perform these types of data analysis 
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to support drug research and development. 
Theoretical aspects of each analysis and func-
tionalities of PKMP are extensively published 
elsewhere [2–4]. The computational algorithms 
in PKMP are based on the pharmacokinetic and 
statistical theories from textbooks [2–4], pub-
lished literature [5], and regulatory guidance 
documents from the Food and Drug 
Administration (FDA) of the United States.

2	 �Organization of PKMP

The organization of PKMP data analysis mod-
ules, file upload functionalities, sample files for 
data analysis, and the last file analyzed are dis-
played on the dashboard of program as shown in 
Fig. 7.1. The user is required to have a user ID 
and password to access the dashboard and analy-
sis modules. The typical file format for upload is 
Excel data types, such as XLS, XLSX, or 
CSV. Once the file is selected for upload, its asso-
ciation for the type of analysis is required using 
the radio buttons provided on the dashboard. 
Sample data files for different types of analysis 
are provided to get used to the data format needed 
for an analysis module. Previously performed 
analyses and their reports are stored and can eas-
ily be accessed from the dashboard.

3	 �Analysis Modules

The data analysis modules are displayed on the 
left side of the dashboard. Each module has sub-
modules for appropriate data analysis and is 
described below.

3.1	 �NCA-PK

Noncompartmental methods (NCA-PK) for 
pharmacokinetic parameters are based on estima-
tion of the area under a curve of drug concentra-
tion vs. time data following the drug 
administration by either extravascular (oral, 
intramuscular, topical, etc.) or vascular routes 
(intravenous, intra-arterial, etc.). 

Noncompartmental methods do not require the 
assumption of specific compartmental model for 
either drug or metabolite. The methods assume 
input, elimination, and sampling from the central 
compartment [2, 3, 5].

3.2	 �Extravascular/IV Bolus/IV 
Infusion

The plasma concentration time profiles following 
oral administration of a drug are shown in 
Fig. 7.2.

To compute noncompartmental pharmacoki-
netic parameters for a plasma concentration vs. 
time profile, as shown in Fig.  7.3, the curve is 
divided into a number of trapezoids by drawing a 
vertical line for each concentration correspond-
ing with time point on x-axis.

The following methods [2] are used to com-
pute area under each trapezoid:

�Linear Trapezoidal Rule

	
AUC = ∑

+
=

=
+

i n

i
i iC C

t
0

1

2
·

	 (7.1)

Ci and Ci + 1 are the plasma concentrations at 
time ti and ti + 1, respectively, and Δt is the sam-
pling time interval. After a single oral dose of a 
drug, Ci at time 0 is typically zero. Ci at time 0 
has a positive value following a single intrave-
nous bolus dose of drug. Therefore, the concen-
tration at time 0 can be extrapolated back using 
either linear back extrapolation, a user-defined 
value, or a compartmental back extrapolation for 
one, two, or three compartment body models for 
an IV dose. The area under the curve is summa-
tion of individual area under each trapezoid up to 
last time of sampling t.

�Log-Linear Trapezoidal Rule
In cases where concentrations are more curved 
between the sampling time points, area estimates 
are obtained using the log-linear trapezoidal rule:
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3.3	 �Mixed Log-Linear

This method is a combination of above linear and 
log-linear trapezoidal methods applied to up and 
down parts of a concentration time profile.

Maximum drug concentration (Cmax) and time 
to Cmax (Tmax) are estimated based on observed 
data as shown in Fig.  7.3. The terminal phase 
elimination rate constant, Kel, is estimated from 
the slope of the concentration-time data during 
the log-linear terminal phase using least squares 
regression analysis. For the Kel calculation, 
PKMP uses the last four data points by default 
(Fig. 7.4). The calculated regression parameters 
(slope and intercept), their statistics for R2 and 
R2-adjusted, and number of data points used are 
displayed. The user can modify this, as 

appropriate, by clicking and selecting other data 
points. The updated calculations are saved and 
retained by the program.

The terminal phase elimination half-life (T1/2) 
is calculated as

	
T1 2

0 693
/

.
=

Kel 	 (7.3)
The area under the concentration-time curve 
(AUC0–t) from time 0 to the last measurable con-
centration (Ct) at time t is calculated using the 
trapezoidal method and extrapolated to AUC0–∞ 
using

	
AUC AUC

Kel0 0– –∞( ) ( )= +t
tC

	 (7.4)

Fig. 7.1  The organization of PKMP

Fig. 7.2  Plasma concentration vs. time profiles in subjects following oral administration of a single dose of a drug
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Partial areas under the curve also can be com-
puted as per the selection of time points such as 
0–2 hours, 4–8 hours, etc., and analysis can be 
repeated for all subjects.

The apparent total body clearance for oral 
administration is calculated as

	

CL
AUC

oral/ F
D

=
−∞( )0 	 (7.5)

For an intravenous dose, the term F for bioavail-
ability is considered 1.

The apparent volume of distribution during 
the terminal phase after oral administration is 
calculated as

	
V Fd

oralCL

Kel
/ =

	 (7.6)
The apparent volume of distribution at steady 
state (Vss) or equilibrium after intravenous admin-
istration is calculated as

	 Vss CL MRT= · 	 (7.7)

where

MRT is the mean residence time and is calcu-
lated as

	
MRT

AUMC

AUC
=
∫
∫

=
∞

∞
0

0

t Cdt

Cdt

.

	 (7.8)

For infusion administration, the duration of infu-
sion is included in computation.

AUMC is area under the moment curve calcu-
lated by means of trapezoidal rule and extrapo-
lated to infinity using the following equations:

	
AUMC = ∑
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	 (7.9)

and

	
AUMC AUMC

Kel Kel
last last last

0 2−∞( ) = + +
t C C.

	
(7.10)

The computation of NCA PK parameters is 
shown in Table 7.1:

The following statistical analysis can be per-
formed after completion of NCA [6].

Fig. 7.3  Representation of plasma concentration vs. time profile divided into trapezoids for the noncompartmental 
method calculations
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4	 �Bioequivalency (BE) Analysis 
(Two-Way Crossover Study)

Bioequivalency for two orally administered drug 
products is required to demonstrate the same rate 
and extent of absorption between the active drug 
ingredient or moiety in the test (T) product and 
the reference (R) drug product to ensure thera-
peutic equivalence. Bioequivalency assessment 
between formulations is needed during different 
clinical stages of drug development. Additionally, 
it is required for the generic product abbreviated 
new drug application submission. The study is 
conducted as a two-formulation, two-period, and 
two-sequence crossover design in a group of sub-
jects administered test and reference treatments. 
Blood samples are obtained after administration 
of products to quantitate drug or metabolite con-
centrations and pharmacokinetic parameters [6].

For the average bioequivalence calculations, 
AUC and Cmax of T and R products are log trans-
formed. A 90% confidence interval for the T to R 
parameter ratio of the averages (population geo-
metric means) is computed using an analysis of 
variance (ANOVA) model including sequence, 
period, and treatment as fixed effects and subject 

within the sequence as random effect. To estab-
lish BE, the calculated confidence interval should 
fall within a BE limit, usually 80–125% for the T 
to R ratio of the parameter averages (Table 7.2).

5	 �Repeated BE Analysis

Repeated bioequivalence studies in which test (T) 
and reference (R) treatments are administered 
repeatedly over three or four periods. The analy-
sis is performed as per the FDA guidance [6], 
using a restricted or residual maximum likeli-
hood (REML) procedure.

The following is a model for the replicated BE 
studies as described in the FDA guidance docu-
ment [6] that assumes a four-period design with 
equal replication of T and R in each of sequences, 
with an assumption of no (or equal) carryover 
effects (equal carryovers go into the period 
effects):

	
Yijkl k ikl ijk ijkl= + + +µ γ δ ε

	 (7.11)
where

i = 1,….s indicates sequence
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Fig. 7.4  Calculation of 
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log-linear terminal 
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changed as appropriate 
by selecting other data 
points
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j = 1, ….n indicates subject within sequence i
k = R, T indicates treatment
l = 1, 2 indicates replicate on treatment k for sub-

jects within sequence i
Yijkl =  the response of replicate l on treatment k 

for subject j in sequence i
γikl = the fixed effect of replicate l on treatment k 

in sequence i
δijk  =  the random subject effect for subject j in 

sequence i on treatment k
εijkl  =  the random error for subject j within 

sequence i on replicate l of treatment k

The εijkl’s are assumed to be mutually indepen-
dent and identically distributed as

	
ε σijkl N~ ,0 2Wk( ) 	

for i = 1...s, j = 1...n, k = R, T, and l = 1, 2.
In addition, the random subject effects are 

assumed to be mutually independent.
An example of four-period crossover study 

design is shown in Table 7.3.
The BE analysis for the four-period crossover 

repeated study for log transformed AUC for T 
and R treatments is displayed in Table 7.4. Similar 
analysis for the Cmax can also be computed. 
Additional statistical results for summary, 
ANOVA, LSMEAN, LSMDIFF, confidence 

intervals, correlation coefficients, residuals, and 
ratio test are also computed.

6	 �Analysis of Variance (ANOVA)

ANOVA models for parallel or repeated groups 
with equal or unequal sample sizes (using 
Welch’s correction) for comparison between the 
means can be performed. An example of ANOVA 
for parallel groups is shown in Table 7.5.

7	 �Dose Proportionality 
Analysis

Dose proportionality between the pharmacoki-
netic exposure parameters, such as Cmax and 
AUC, and administered dose is assessed to evalu-
ate the linearity in the pharmacokinetic of a drug. 
This ensures predictability in increase in drug 
exposure as measured by Cmax and AUC, meaning 
twofold increase in dose results in a proportional 
twofold increase in exposure. Dose proportional-
ity is evaluated by the following analysis:

7.1	 �Linear Model

	 y m x b= +· 	 (7.12)
where

y = PK parameter m = slope

Table 7.2  Bioequivalence analysis for a two-way crossover study

Parameter name: AUC(0–t)

Source df SS type I SS type III MSE F-value Pr >/i
Sequence 1 0.002 0.002 0.002 0.014 0.9068
Subj(Sequence) 10 1.594 1.594 0.159 29.431 4.32E-06
Period 1 0.021 0.021 0.021 3.784 0.0804
Trt 1 0.000397 0.000397 0.000 0.073 0.7921
Model 13 1.618 0.124 22.969
Error 10 0.054 0.005

90% confidence interval
Trt difference log scale Lower Upper
0.00813 −0.0463 0.0626
Original scale% T/R ratio lower% T/R ratio upper%
100.82 95.47 106.46

Similar analysis for Cmax or other parameters can be performed

A. K. Shah
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x = dose
b = intercept

An example of dose proportionality for a PK 
parameter, AUC(0–t), is shown in Fig. 7.5.

7.2	 �Power Model

	 y b xm= · 	 (7.13)

	 log log logy b m x= + 	 (7.14)

where

y = PK parameter
b = coefficient
m = exponent
x = dose

An example of dose proportionality using the 
power model for a PK parameter, AUC(0–t), is 
shown in Fig. 7.6.

7.3	 �Dose Normalization

Pharmacokinetic parameter is normalized to the 
lowest dose as shown in Table 7.6 and analyzed 
to assess dose proportionality.

Normalized Cmax is obtained as Cmax/dose/low-
est dose (Fig. 7.7).

8	 �Urine Data Analysis

Urinary excretion is important in understanding 
the routes of elimination of a drug from the body 
to account for the mass balance. Urinary excre-
tion rate [2] involves measurement of drug con-

centration in the urine over the urine collection 
interval and is calculated as

	

dXu

dt

Cu Vu

t
=

⋅

	 (7.15)
where

dXu/dt = urinary excretion rate
Vu = urine volume
∆t = urine collection interval

The renal clearance of a drug is calculated as

	
CL

AUCr =
Xu

	 (7.16)
where

CLr = renal clearance
Xu = amount of drug in urine over the interval t
AUC = area under the plasma concentration-time 

curve over time t

The computation of urinary data from the 
PKMP analysis is shown in Table 7.7, and graph-
ical output for a selected plot is shown in Fig. 7.8.

Table 7.3  Example of a four-period repeated crossover plasma concentration data

Subject Time (hr) Dose(mg) Sequence Treatment Period Cp (ng/mL)
1 0.00 100 RRTT R 1 0.00
1 0.25 RRTT R 1 30.36
1 1.00 RRTT R 1 73.08
1 0.00 100 RRTT R 2 0.00
1 0.25 RRTT R 2 41.93
1 1.00 RRTT R 2 132.30
1 0.00 100 RRTT T 3 0.00
1 0.25 RRTT T 3 30.36
1 1.00 RRTT T 3 73.08
1 0.00 100 RRTT T 4 0.00
1 0.25 RRTT T 4 41.93
1 1.00 RRTT T 4 132.30

Data for additional time points and subjects

7  Pharmacokinetic Modeling Program (PKMP): A Software for PK/PD Data Analysis
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9	 �Superposition Analysis

The principle of superposition [2] allows for the 
prediction of concentration-time curve after mul-
tiple consecutive doses based on the drug 
concentration-time data obtained after a single 
dose. The basic assumptions are that the drug is 
eliminated by first-order pharmacokinetics and 
the pharmacokinetics of the drug is linear. Based 
on the calculations of terminal elimination rate 
constant, dose, and intervals (equal or unequal) 
and number of doses, superposition analysis for 
data in Table  7.8 is performed as shown in 
Fig. 7.9.

10	 �Toxicokinetics

In toxicokinetic studies, mainly in mice, rats, and 
other rodents, the generation of a complete 
concentration-time profile for each animal is dif-
ficult due to the limited blood volume that can be 
drawn. In such a scenario, a single blood sample 
is obtained from each animal, and several ani-
mals are used to generate the complete 
concentration-time profile over a sampling time 
period. As the animals are sacrificed after the 
sampling, this is also called “destructive sam-
pling” method [7]. An example of such a data is 
shown in Table 7.9.

Table 7.4  Bioequivalence analysis of AUC for the four-period crossover repeated study for test (T) and reference (R) 
treatments

Treatment LS means estimate Standard error DF T-value Lower CI Upper CI
T 6.64 0.047 22.9 141.258 6.55 6.74
R 6.64 0.047 22.9 141.258 6.55 6.74
LS means difference 90% CI 95% CI
Treatment Estimate Standard error DF Lower Upper Lower Upper
T–R 0.0 0.0509 44 −0.0855 0.0855 −0.1026 0.1026
Original scale ratio (%) 90% CI 95% CI
Estimate Lower Upper Lower Upper
100.0 91.8 108.9 90.3 110.8

Table 7.5  Analysis of variance of AUC(0–t) comparison for a parallel group study

ANOVA

Effect source
Sum of 
squares

Degree of 
freedom

Mean 
square F-value Prob > F

Treatment 0.308 1 0.308 6.857 0.014
Error 1.346 30 0.045
Total 1.653 31

Confidence interval
Source Group 1 vs. Group 2
Difference Standard error Degree of freedom T-value CI.low CI.high P-value
−0.196 0.075 30 1.697 −0.323 −0.069 0.014

Group comparison 90% CI
Group N Geo. mean %CV Ratio Point est.(%) Low High P-value
Group 1 16 694.71 21.97 GP1/GP2 82.19 72.38 93.33 0.01
Group 2 16 845.21 19.97

Similar analysis for Cmax and other PK parameters can be performed

A. K. Shah
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Fig. 7.5  Dose proportionality analysis using the linear model for AUC(0-t)

Fig. 7.6  Dose proportionality analysis using the power model for AUC(0-t)

7  Pharmacokinetic Modeling Program (PKMP): A Software for PK/PD Data Analysis
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The analysis of this type of toxicokinetic data 
can be performed as follows using the toxicoki-
netic module of PKMP as shown in Table 7.10.

An ANOVA can be performed to determine the 
differences in the treatments administered as well 
as the bootstrap analysis [8] to simulate the data.

11	 �Interspecies Scaling

Interspecies scaling in pharmacokinetics allows 
for the prediction of in  vivo drug disposition 
behavior in humans from the experimental obser-
vations made in one or more species. Interspecies 
scaling of the pharmacokinetic processes of 
absorption, distribution, and clearance of drugs 
can be performed by allometry [9, 10]. The allo-
metric approach involves estimation of the phar-
macokinetic parameters  – clearance, half-life, 
volume of distribution, etc. – in humans based on 
their relationship to body mass in several test ani-

mal species. PKMP interspecies scaling module 
includes the following methods for prediction of 
human pharmacokinetics and estimation of a 
maximum safe starting dose (MSSD) in initial 
clinical trials for drugs in human subjects as per 
FDA guidance [11].

Table 7.6  Dose normalization of a PK parameter

Dose
(mg)

Cmax

(mcg/ml) Normalized Cmax

100 449 449
100 292 292
100 871 871
100 348 348
200 898 449
200 584 292
200 1742 871
200 696 348
300 1347 449
300 876 292
300 2613 871

Normalized Cmax is obtained as Cmax/Dose/lowest dose

Fig. 7.7  Dose proportionality of Cmax using the dose normalization method

A. K. Shah
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12	 �Method 1: NCA

In order to perform analysis using this method, 
pharmacokinetic data after an intravenous admin-
istration of a drug in three or more animal spe-
cies, such as mice, rats, and dogs, are needed. 
Intravenous data is preferred for the complete 
bioavailability of a drug, although extravascular 
route PK data can be used with consideration to 
differences in bioavailability across the species. 
In this method, the pharmacokinetic parameters, 
CL and Vd, among animal species are correlated 
as exponential functions of body weight or body 
surface area (BSA) using the simple allometric 
equation below, as shown in Fig. 7.10:

	 Y aWb= · 	 (7.17)

or its logarithmic transformation.

	 log log logY a b W= + 	 (7.18)

where

Y = pharmacokinetic parameter
W = body weight
a = allometric coefficient
b = allometric exponent

Similar analysis is done for a Vd parameter for 
human prediction as shown in Table 7.11.

13	 �Method 2: PK Parameters

In this method, PK parameters from animal spe-
cies are converted to human parameters or animal 
parameters using the BSA ratio extrapolation. 
For example, human and mouse BSA are 1.8 and 
0.007 m2, respectively, and the human-to-mouse 
BSA ratio is 257. For a mouse CL value of 5 mL/
hr, the human CL can be predicted as product of 

Fig. 7.8  Urinary excretion plot for the % dose excreted and the midpoint of urine collection interval for a drug

Table 7.8  Example of a plasma concentration-time data 
for a subject for the superposition analysis

Subject Time (hr) Concentration (ng/mL) Dose (mg)
1 0 0 100
1 1 255
1 2 447
1 3 449
1 4 410
1 6 226

A. K. Shah
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257 and 5 equal to 1285  mL/hr. A similar 
approach can be used for prediction of Vd.

14	 �Method 3: Human 
Equivalent Dose (HED) 
(Table 7.12)

HED from an animal’s no observed adverse effect 
level (NOAEL) is calculated as per the FDA 
guidance [11] using

	 HED animalNOAEL HEDfactor= / 	
(7.18)

or

	

HED animalNOAEL Wanimal Whuman= ×( ) −( )
/

1 b

	
(7.19)

where

W = body weight
b = allometric exponent (typically = 0.67)

15	 �Dose Escalation

The phase 1 clinical trials are conducted in a dose 
escalation manner to determine an optimal rec-
ommended dose or maximum tolerated dose for a 
new compound for further testing in phase 2 tri-
als. The dose escalation scheme in phase 1 trials 
is based on the careful evaluation of safety con-
sideration both to study subjects and to attain the 
goals of trial [12]. Typically, the starting dose for 
the phase 1 clinical studies is selected using 
NOAEL from animals and escalated using either 
empiric, modified Fibonacci, or logarithmic 
increments. The PKMP computes and provides 
these dose escalation schemes as shown in 
Table  7.13, and these dose escalation schemes 

Fig. 7.9  Superposition 
analysis of a data in 
Table 7.8 based on Kel, 
0.057 (/hr); dosing 
interval (τ), 6.0 hour; 
and number of steps, 4

Table 7.9  Example of a toxicokinetic data collected in a 
limited sampling method with each animal providing one 
blood sample

Mouse# Treatment
Dose (mg/
kg)

Time 
(hr)

Cp (mcg/
mL)

1 A 50 0 0.66
6 A 0 0.32
11 A 0 0.34
16 A 0 0.44
2 A 1.5 0.059
7 A 1.5 0.031
12 A 1.5 0.084
17 A 1.5 0.082
… … … … …

7  Pharmacokinetic Modeling Program (PKMP): A Software for PK/PD Data Analysis
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can be customized by changing a factor. Using 
the maximum safe recommended dose (MSRD) 
of 10 mg/kg and using the eight steps, the dose 
escalation is computed. The initial dose value can 
be selected as 1/10 of MSRD or other as 
appropriate.

16	 �Compartmental 
Pharmacokinetics (CA-PK)

The plasma concentration vs. time data after 
administration of a drug can be fitted to the 
appropriate pharmacokinetic model depending 
on the route of administration to the following 
compartmental body models (CBM) [2] as shown 
in Table 7.14:

The concentration and time data is fitted to a 
selected model, and the convergence of param-
eters is achieved by Levenberg-Marquardt 
method [13], with selected weighting options 
(1, 1/Cobs, 1/C2

obs, 1/Cpred, and 1/C2
pred). The 

parameters, their standard errors, secondary 
parameters, and model selection criteria are 
computed (Table  7.15), and the observed and 
predicted concentration plots are shown in 
Fig. 7.11.

17	 �Pharmacodynamics (PD) 
Analysis

Pharmacodynamics is a relationship between the 
plasma concentration of a drug and a given response 
[2]. The response can be the drug interaction with 
the receptor both directly and reversibly (e.g., anti-
arrhythmic and neuromuscular blocking agents), 
indirectly (e.g., coumarin anticoagulants), or irre-
versibly binding to the receptors (e.g., anticancer 
agents and bactericidal antibiotics).

Fig. 7.10  Interspecies scaling using pharmacokinetic data obtained after an intravenous administration of a drug in the 
mouse, rat, and dog

Table 7.11  Human predicted parameters based on interspecies scaling using the body weight analysis

Dose
(mg/kg)

Kel
(1/hr)

Body weight
(kg)

Body surface area
(m2)

T1/2

(hr)
AUC0–∞

(mg/L·hr)
Cl/F
(L/hr)

Vd/F
(L)

Cmax

(mg/L)
Τ
(hr)

Cavg

(mg/L)
1 0.156 60 1.62 4.45 4.93 12.17 78.1 0.77 12 0.41

Table 7.12  HED based on the animal NOAEL

Species NOAEL (mg/kg) HED factor HED (mg/kg)
Mouse 100 12.3 8.1
Rat 75 6.2 16.1
Dog 50 1.8 55.6

7  Pharmacokinetic Modeling Program (PKMP): A Software for PK/PD Data Analysis
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The following pharmacodynamic models are 
available for evaluation of concentration-effect 
relationship after a drug administration 
(Table 7.16). The effect vs. concentration data is 
optimized using Levenberg-Marquardt or Nelder-
Mead [14] methods, and the parameter estimate, 
standard error, percent coefficient of error, and 

model diagnostics are computed. An example of 
a model fit for the sigmoidal Emax model is pre-
sented in Table 7.17 and Fig. 7.12.

18	 �Dissolution Data Analysis

Dissolution is the process of dissolving a drug 
substance from the solid state. Drug absorption 
from a solid dosage form after oral administra-
tion depends on the release of the drug substance 
from the drug product, the dissolution of the drug 
under physiological conditions, and the absorp-
tion across the gastrointestinal tract. Because of 
the critical nature of the first two of these steps, 
in vitro dissolution may be relevant to the predic-
tion of in  vivo performance of drug product. 
Therefore, in  vitro dissolution for immediate 
release solid oral dosage forms, such as tablets 
and capsules, is used to assess the lot-to-lot qual-
ity of a drug product, guide development of new 
formulations, and ensure continuing product 
quality and performance after certain changes, 

Table 7.13  Dose escalation scheme based on the 
NOAEL and MSRD

Empiric
Modified-
Fibonacci Logarithmic

Dose 
no. Factor

Dose 
value Factor

Dose 
value Factor

Dose 
value

1 1 1 1 1 0 1
2 2 2 0.65 1.7 0.5 1.6
3 1.5 3 0.52 2.5 1 2.7
4 1.3 3.9 0.4 3.5 1.5 4.5
5 1.3 5.1 0.29 4.5 2 7.4
6 1.3 6.6 0.33 6 2.5 12.2
7 1.2 7.9 0.33 8 3 20.1
8 1.1 8.7 0.33 10.7 3.5 33.1

Using a 10  mg/kg MSRD and the eight steps, the dose 
escalation is computed. The initial dose value is selected 
as 1/10 of MSRD

Fig. 7.11  Plot of the observed and predicted concentrations for a 1-CBM oral absorption model

A. K. Shah
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Table 7.14  Compartmental analysis models and equations

Route of 
administration PK model Equation
Extravascular
1-CBM (with and 
without lag time)

C
FDka

V ka k
e ek t ka t=

−( )
−





−( ) −( )

10
10. .

C concentration, F bioavailability, D dose, V/F 
apparent oral volume of distribution, ka 
first-order absorption rate constant, k10 
first-order elimination rate constant

2-CBM (with and 
without lag time)

Cp = Ae− ∝ t + Be−βt + Ce−kat

IV bolus
1-CBM C

D

V
e k t= − 10.

2-CBM C = Ae− ∝ t + Be−βt

α + β = k12 + k21 + k10
αβ = k21k10

3-CBM Cp = Ae− ∝ t + Be−βt + Ce−γt

Co = A + B + C

IV infusion
1-CBM C

ko

Vk
e ek T k t= −( )− − ∗

10
1 10 10

A
kaFD k

V ka
=

− ∝( )
− ∝( ) −( )

21

β α

B
kaFD k

V ka
=

−( )
−( ) −( )

21 β
β α β

C
kaFD k ka

V ka ka
=

−( )
−( ) −( )

21

α β

A
D k

V
=

∝ −( )
−( )
21

α β

B
D k

V
=

−( )
−( )

21 β
α β

A
D k k

V
=

−( ) −( )
−( ) −( )

21 31α α
γ α α β

B
D k k

V
=

−( ) −( )
−( ) −( )

21 31β β
γ β α β

C
D k k

V
=

−( ) −( )
−( ) −( )

21 31γ γ
γ α γ β

(continued)
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such as changes in the formulation, the manufac-
turing process, the site of manufacture, and the 
scale-up of the manufacturing process [15, 16]. 
The mathematical models for describing dissolu-
tion models [17–20] for drugs are shown in 
Table 7.18.

An example of a dissolution data fitted to the 
Weibull_4 model is shown in Table  7.19 and 
Fig. 7.13.

19	 �Dissolution Profile 
Comparison

Dissolution profile comparison is done to accept 
product sameness under scale-up and post-
approval-related changes, to waive bioequiva-
lence requirements for lower strengths of a 
dosage form, and to support waivers for other 
bioequivalence requirements [15, 16, 19]. The 
following are dissolution profile comparison 
using model-independent methods.

Table 7.14  (continued)

Route of 
administration PK model Equation
2-CBM

3-CBM

C
ko k e

V
e

ko k e

V
e

T

t

T

=
−( ) −( )

−( )
+

−( ) −( )
−( )

−
− ∗

−
−

21 1

21 1

α

α α β

β

β α β

α
α

β
ββ t∗

Cp A e e

B e e C e e

t T

t T t T

= −



 +

−



 + −

∗( ) −( )

− ∗( ) −( ) − ∗( ) −( )

α α

β β γ γ





Table 7.15  Parameters of a 1-CBM oral absorption 
model

Parameter Unit Estimate
Standard 
error CV%

Subject 1
A ng/ml 144.532 3.715 2.57
ka 1/hr 164 031 2.946
k10 1/hr 0.183 005 2.63
t1/2ka hr 0.651
t1/2k10 hr 3.787
V/F (mg)/(ng/

ml)
0.836

CL/F (mg)/(ng/
ml)hr

0.153

Tmax hr 1.997
Cmax ng/ml 8329
AUC0–t ng/ml*hr 64448
AUC0–inf ng/ml*hr 653.81
AUMC ng/ml*hr2 418666
MRT hr 6.403
Robs-pre – 0.995
SS – 14128
WSS – 14228
R2 – 0.997
WR2 – 0.997
SE – 3.593
AIC – 75.384
SC – 77.301
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20	 �Difference Factor

The difference factor calculates the percent dif-
ference between the two curves at each time point 
and is a measurement of the relative error between 
the two curves:

	

f
Rt Tt

Rt

t
n

t
n

1 100
1

1

=
∑ − 

∑ 
∗=

=

|| ||

	 (7.20)

where

Rt = reference assay at time point t
Tt = test assay at time point t
n = the number of dissolution time points

The dissolution data is displayed in Fig. 7.14, 
and the f1 comparison analysis is shown in 
Table 7.20.

21	 �Similarity Factor

The similarity factor is a logarithmic recipro-
cal square root transformation of the sum 
squared error and is a measurement of the sim-
ilarity in the percent dissolution between the 
two curves:

	

f n Rt Tt
n

t

2 50 1 1 100
1 2

0 5

= ∗ + ( )∑ −( )





∗












= −

log
.

	
(7.21)

where

Rt = reference assay at time point t
Tt = test assay at time point t
n = the number of dissolution time points

The dissolution data is displayed in Fig. 7.14, 
and the f2 comparison analysis is shown in 
Table 7.21. A bootstrap analysis for the f2 com-
parison can also be performed, and the results are 
displayed in Table 7.21.

22	 �Multivariate Statistical 
Difference (MSD) 
Determination

In instances where dissolution is measured at 
multiple time points and within batch variation is 
more than 15% CV, a multivariate model-
independent procedure is more suitable for dis-
solution profile comparison [21]. The statistic of 
Mahalanobis distance is used to assess the differ-
ence between the means of test and reference 
data with adjustments for differences in measure-
ment variation at different time points and the 
correlation among the measurements at multiple 
time points. The variance-covariance matrix and 
inverse of variance-covariance matrix for the 
pooled data is computed to calculate overall sta-
tistics as shown in Table 7.22.

23	 �IVIVC Model

The objective of developing an in vitro–in vivo 
correlation (IVIVC) is to establish a predictive 
mathematical model describing the relationship 
between an in  vitro property and a relevant 
in vivo response [22]. The IVIVC for modified 
release dosage forms has often been used during 
pharmaceutical development in order to reduce 
development time and optimize the formulation. 
A good correlation is a tool for predicting in vivo 
results based on in vitro data. IVIVC allows dos-
age form optimization with the fewest possible 
trials in human, fixes dissolution acceptance cri-
teria, and can be used as a surrogate for further 
bioequivalence studies; furthermore, it is also 
recommended by regulatory authorities. The 
schematic of the process to develop an IVIVC is 
shown in Fig. 7.15. It involves in vitro dissolution 
data for formulations under evaluation and 
in  vivo bioavailability data for formulations, as 
well as a reference formulation such as intrave-
nous, solution, or immediate release formulation 
[20, 23–30]. The correlations are established 
between in vivo parameters and in vitro data.
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24	 �Level A Correlation

A level A correlation is a predictive mathematical 
model for the relationship between the entire 
in  vitro dissolution-time course and the entire 
in vivo response-time course of drug absorbed. A 
level A IVIVC is considered to be the most infor-
mative and is recommended [22]. It involves 

obtaining in vitro dissolution profiles and in vivo 
plasma concentration profiles for the formula-
tions under evaluation. The estimate of the in vivo 
absorption, or dissolution time course, using a 
deconvolution technique described below for 
each formulation and subject is obtained. The lin-
ear correlation, as shown in Fig. 7.15d, between 
the % absorbed and the % dissolved to predict 
plasma concentrations is achieved using the con-
volution methods. The predictability in the model 
is determined by estimation of the prediction 
error in AUC and Cmax for internal and/or external 
batches of formulations based on observed and 
predicted plasma concentration-time data [22]:

	
%PE

observed predicted

observed
=

−





∗100

	
(7.22)

Average absolute percent prediction error (%PE) 
of 10% or less for Cmax and AUC establishes the 
predictability of the IVIVC. In addition, the %PE 
for each formulation should not exceed 15%.

The following models are included for decon-
volution of in vivo data in PKMP for analysis:

24.1	 �Deconvolution: Wagner-
Nelson Method

For a drug with one-compartment body model 
characteristics, the fraction of drug absorbed to 
time t is given by [2]:

Table 7.16  Pharmacodynamics models and equations

Model Equation
Emax

E
E C

C
=

+
max

EC

.

50

Emax with baseline 
effect E E

E E C

C
= +

−( )
+0

0

50

max

EC

.

Sigmoid Emax

E
E C

C
=

+
max

EC

. γ

γ γ
50

Sigmoid Emax 
with baseline 
effect

E E
E E C

C
= +

−( )
+0

0

50

max

EC

. γ

γ γ

Inhibition Emax

E E
C

C
= −

+






















max EC
1

50

Inhibition Emax 
with baseline 
effect

E E E E
C

C
= − −( )

+








max max EC0

50

Inhibition 
sigmoid Emax E E

C

C
= −

+






















max EC
1

50

γ

γ γ

Inhibition 
sigmoid Emax with 
baseline effect

E E E E
C

C
= − −( )

+








max max EC0

50

γ

γ γ

E effect, Emax maximum effect, E0 baseline, C concentra-
tion, EC50 concentration producing 50% of maximum 
effect, γ sigmoidicity factor

Table 7.17  PD parameter estimates for a sigmoidal Emax 
model

Parameter Estimate Standard error CV%
Subject 1
Emax 99.995 3.948 3.948
EC50 11.424 0.846 7.406
Gamma 1.371 0.125 9.127
Diagnostics Values
robs-pre 0.998
SS 14.719
WSS 14.719
R2 1
WR2 1
SE 1.918
AIC 24.824
SC 24.662
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X

X

C K Cdt

K Cdt
t t

t
A

A

( )
( )

=
+ ∫
∫

∞
∞

0

0 	 (7.23)

XA = amount of drug absorbed to time t or ∞
Ct = plasma concentration of drug at time t
K  =  apparent first-order elimination rate 

constant

24.2	 �Convolution

Using the superposition principle and following 
equation for 1-CBM [25], the amount of a drug in 
the body is predicted from the amount dissolved 
at each time and K and summed over all the indi-
vidual dissolution times:

	 X X e Kt= −0 	 (7.24)

X0 = amount in at each dissolution time
K  =  apparent first-order elimination rate 

constant

Predicted concentrations (Cp) are obtained as 
X:

	
Cp

X

V Spred
d For

=
	 (7.25)

Vd = apparent volume of distribution
SF = scaling factor

24.3	 �Deconvolution: Loo-
Riegelman Method

For a drug with two-compartment body model 
characteristics, the fraction of drug absorbed to 
time t is given by [2]:

	

X

X

C k Cdt V X

k Cdt
t

t
t

tA

A

c
p( )

( )
=

+ ∫ + 





( )

∫
∞

∞

10 1

10

0

0 	
(7.26)

XA = amount of drug absorbed to time t or ∞
Ct = plasma concentration of drug at time t
k10  =  apparent first-order elimination rate con-

stant from the central compartment
Vc  =  the apparent volume of the central 

compartment

Fig. 7.12  Plot of the observed and predicted effect vs. concentration plots for a sigmoid Emax model
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Table 7.18  Dissolution models

Model Definition Equation
Zero order F = amount of drug dissolved in time t

k0 = zero-order release constant
F = k0. t

Zero order with Tlag Tlag = lag time in dissolution F = k0. (t − Tlag)
Zero order with F0 F0 = initial amount of drug in the solution F = F0 + k0. t
Baker-Lonsdale kBL = release rate constant

Baker-Lonsdale with Tlag

First order k = first-order rate constant F = 100. (1 − e−k. t)

First order with Tlag

First-order with Tlag Fmax Fmax = maximum amount of drug dissolved in 
time t

First-order with Fmax F = Fmax. [1 − e−k. t]
Higuchi KH = Higuchi dissolution constant F = KH. t0.5

Higuchi F0 F = F0 + KH. t0.5

Higuchi with Tlag F = KH. (t − Tlag)0.5

Hixson-Crowell KHC = constant F = 100. [1 − (1 − KHC. t)3]
Hixson-Crowell with Tlag F = 100. [1 − (1 − KHC. (t − Tlag)3]
Hopfenberg KHB = constant F = 100. [1 − (1 − KHB. t)n]
Hopfenberg with Tlag F = 100. {1 − [1 − KHB. (t − Tlag)]n}
Korsmeyer-Peppas F = fraction drug released at time t

KKP = release rate constant
n = release exponent

F = KKP. tn

Korsmeyer-Peppas with F0 F = F0 + KKP. tn

Korsmeyer-Peppas with 
Tlag

F = KKP. (t − Tlag)n

Weibull_1 α = scale parameter
Ti = location of parameter
β = shape parameter

Weibull_2

Weibull_3

Weibull_4
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Xp  =  amount of drug in the peripheral 
compartment

24.4	 �Convolution

Using the superposition principle, drug amounts 
in the body are predicted from the dissolution 
amount at each time and using the following 
2-CBM equation:

	

X
X k

e
X k

et t=
−( )
−( )

+
−( )

−( )
− −0 21 0 21α

α β
β

α β
α β

	
(7.27)

Predicted concentrations (Cp) are obtained as

	
Cp

X

V Spred
c For

=
	 (7.28)

Vc  =  apparent volume of distribution of central 
compartment

SF = scaling factor

24.5	 �Numeric Deconvolution

The absorption rate (rabs) that results in plasma 
concentration c(t) can be estimated by solving 
the following equation:

	
c t c t u r u du

t
( ) = ∫ −( ) ( )

0

δ abs
	 (7.29)

where

c(t) = plasma concentration versus time profiles 
of tested formulation

Cδ  =  concentration time profile resulting from 
instantaneous input of a unit amount of drug

rabs = input rate of the oral solid dosage form into 
the body

u = variable of integration

25	 �Correlations

25.1	 �Level A Correlation

�Using an Interpolation Method
Slope and intercept between two successive time 
points for mean %dissolution vs. time and mean 
% in  vivo fraction absorbed (FA) vs. time are 
computed. Times of 10%, 20%, and up to 100% 
dissolution are determined, and the %FA corre-
sponding to these times is computed. Based on 
the %FA vs. %dissolved data, level A linear 
regression with parameters slope, intercept, and 
correlation coefficient is obtained.

�Using the Hill Equation

	

D
D C

D C
=

[ ]
[ ] + [ ]

max

γ

γ γ
50 	 (7.30)

D = rate of dissolution
Dmax = maximum dissolution rate
C = %dissolved

Table 7.19  Weibull_4 parameters for a dissolution data 
shown in Fig. 7.13

F = Fmax·{1−Exp[−((t−Ti)^beta)/alpha]}
Parameter Value
Alpha 188.547
Beta 1.212
Ti 119.829
Fmax 2.547
Parameter
(time for % dissolved)

Value

T25 25.323
T50 47.97
T75 7881
T80 7733
T90 84.354
Parameter Value
N_observed 8
DF 4
R_obs-pre 0.996
Rsqr 0.991
Rsqr_adj 0.991
MSE 19.878
MSE_root 4.458
Weighting 1
SS 79.511
WSS 79.511
AIC 3707
MSC 4.476
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D50 = time of 50% dissolved
γ = shape factor

Both %dissolution-time and %FA-time data 
are fitted to the Hill equation. Additional compu-
tations are done in the same way, as indicated in 
the interpolation method above.

�Using Weibull Equation

	

D D e

t Ti

= ∗ −
















−
−( )













max 1

β

α

	(7.31)

D = cumulative % dissolved
t = time
α = scale parameter
Ti = lag time

Fig. 7.13  Plot of the observed and predicted dissolution data fitted to a Weibull_4 model

Fig. 7.14  Mean (± SD) dissolution profiles for test and reference oral products
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Β = shape parameter

For further computations, a similar process, as 
described above under using Hill equation, is 
applied.

25.2	 �Level B Correlation

The level B correlation is a predictive mathemati-
cal model for the relationship between summary 
parameters characterizing the in vitro and in vivo 
time courses, such as the mean in vitro dissolu-
tion time to the mean in vivo dissolution time, the 
mean in vitro dissolution time to the mean resi-
dence time in vivo, or the in vitro dissolution rate 
constant to the absorption rate constant [22]. An 
example of mean dissolution time in  vivo and 
mean dissolution time analysis is shown in 
Fig. 7.16.

25.3	 �Level C Correlation

The level C correlation is a predictive mathemati-
cal model of the relationship between the amounts 
dissolved in  vitro at a particular time (t50%, 
t90%, etc.) and a summary parameter character-
izing the in vivo time course (AUC, Tmax, or Cmax) 
[22]. An example of level C correlation for the 
Cmax for three formulations and % dissolved at 
time is shown in Fig. 7.17.

26	 �Simulation

Simulation analysis allows predicting dose-
concentration, as well as concentration-
response relationships, based on mathematical 
models. Pharmacokinetic simulations allow 
predicting multiple-dose drug concentrations 
based on a single-dose data which can be 
used to evaluate safe margins during drug 
development. In formulation development, 

Table 7.20  f1 difference factor in dissolution comparison

Mean_R vs 
Individual_T Mean_Test vs Mean_Reference

Overall statistics Mean SE
f1 25.2 0.93 25.1
Is f1 between [0,15] for Mean_Test and Mean_Reference? No
Similarity of test and reference Reject

Table 7.21  f2 difference factor in dissolution comparison and the bootstrap simulation

Mean_R vs 
Individual_T Mean_Test vs Mean_Reference

Overall statistics Mean SE
f2 41.5 0.73 41.7
Is f2 between [50,100] for Mean_Test and Mean_Reference? No
Similarity of test and reference Reject
Bootstrap analysis statistics for f2 Value
Observed f2 41.7
Number of bootstrap 5000
Bootstrap mean 41.7
Bootstrap median 41.7
5% percentile 40.1
95% percentile 43.3
Skewness 0.1
Kurtosis 0
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IVIVC simulations aid in modified release 
product optimization. Pharmacodynamic 
simulations allow examining the relationship 
between the drug concentration and the 
response. These techniques assist in optimiz-
ing the formulation development and predict-
ing the dose-response relationship to design 
better clinical trials.

Table 7.22  Overall statistics for a MSD analysis

Statistics Value
P (sampling points) 8
K (scaling factor) 0.511
F (p, n1 + n2–p–1, 0.95) 2.641
Hotelling’s T2 1533.549
Mahalanobis distance (MSD) 15.987
Relative distance(RD) 23.717
Lower 95% CR MSD 13.715
Upper 95% CR MSD 18.26
Upper 95% CI less than RD Yes
Reference and test global similarity Reject

Fig. 7.15  Schematic representation of the process to 
develop an IVIVC involving (a) dissolution, (b) in vivo 
concentration data, (c) computation of in vivo dissolution 
or fraction absorbed, (d) level A correlation for in  vivo 

dissolution and in vitro dissolution, (e) Levy plot related 
to time for in vivo dissolution and time for in vitro disso-
lution, and (f) prediction error for convolution

A. K. Shah
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26.1	 �Pharmacokinetic Simulation

Pharmacokinetic simulations can be performed 
for single and multiple doses based on explicit 
equations as shown in Table  7.14 for 1-CBM, 
2-CBM, and 3-CBM models for oral, IV bolus, 
or IV infusion. An example of a 1-CBM oral mul-
tiple dosing is shown in Fig. 7.18.

26.2	 �Pharmacodynamic Simulation

Pharmacodynamic simulations can be per-
formed based on explicit equations as shown 
in Table 7.16, and an example of the simula-
tion for inhibitory Emax model is shown in 
Fig. 7.19.

Fig. 7.16  Level B correlation for MDT (in vivo) and MDT (in vitro)

Fig. 7.17  Level C correlation for Cmax and % dissolved at a time for three formulations
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27	 �IVIVC

Typically, in a formulation development, dis-
solution data becomes available as the first 
step. The data can be fitted to dissolution mod-
els such as Emax or Weibull functions. If the PK 
disposition parameters after intravenous 
administration, such as C0 and Kel for a 
1-CBM or A, α, B, and β for a 2-CBM, are 
available from a study or the literature, then 
using the convolution integral, as shown in Eq. 
(7.29), can be used to predict the concentra-
tions as a product of input rate and disposition 
function. In Fig.  7.20, dissolution data is 
shown, fitted to an Emax model, and the model 
parameters are displayed. The disposition 

parameters, C0 and Kel, for a 1-CBM, follow-
ing IV bolus administration, are used to simu-
late the predicted concentrations as shown in 
Fig. 7.20. The concentration-time data obtained 
from this simulation can be further evaluated 
for NCA analysis, and bioequivalency simula-
tion can be performed with the knowledge of 
variability, as determined by SD or CV%.

28	 �Bioequivalence (BE)

The concentration-time data with a measure of 
variability, such as SD or CV% for two treat-
ments (Table  7.23), can be simulated using the 
bootstrap method. The pharmacokinetic parame-
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multiple oral doses for a 
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100 mg; number of 
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mL; and step size, 0.5
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ters such as AUC and Cmax and confidence inter-
vals (90, 95, or 99%) are calculated. The user can 
compare the AUC and Cmax ratios for test and ref-
erence formulations to estimate bioequivalence 
(Table 7.24).

29	 �Sample Size

For bioequivalence studies using a standard 
two-treatment crossover design, the sample 
size needs to be selected with the power to 

demonstrate the test and reference ratio for 
averages of Cmax, and AUC is within an 
80–125% limit. The sample size is calculated 
using within-subject variability (SD) for the 
PK parameter, magnitude of subject-by-
formulation interaction, the difference of the 
arithmetic means of the log transformed 
parameters (delta, usually taken as 0.05), and 
the 80% or 90% power [6, 31]. The sample 
size calculations are calculated as below and 
shown in Table 7.25:

Time (min) %Dissolved

0 0

10 10

20 12

30 32

40 46

60 60

90 82

120 99

1 CBM IV Parameters:

C0 (µg/L) K10 (/min)

10 1

Hill parameters:

Emax EC50 Gamma

144.2 72.7 1.5

Fig. 7.20  Simulation of an IVIVC using the dissolution data and disposition parameters for a drug

Table 7.23  Observed and the bootstrap simulated concentration-time data for BE simulation

Treatment
Time
(hr) Cp observed SD observed Cp simulation SD simulation Count

Test 0 0 0 0 0 500
Test 0.5 2.685 2.333 2.821 2.18 500
Test 1 6.577 3.19 6.55 3.237 500
Test 1.5 6.825 2.136 6.632 2.247 500
Test 2 7.16 2.77 7.36 2.231 500
Test Additional data
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sigma_w (σw) = within-subject variability (stan-
dard deviation) for the PK parameter

sigma_D (σD) = subject-by-formulation interac-
tion for the PK parameter

Delta (∆) = deviation from a perfect equivalence, 
1-delta rather than 1, recommended 0.05

Power (β) = 80% or 90%
Alpha (α) = one-sided 5%, it is fixed according to 

regulatory convention.
BE margin (θ) = 0.8
Df = degrees of freedom

30	 �Differential Equation-Based 
Analysis (dEq)

30.1	 �Predefined Simulation Models

Differential equation-based analysis is a power-
ful tool to simulate PK/PD data. The predefined 
differential equations for pharmacokinetic 1-, 2-, 
and 3-CBM for extravascular, IV bolus, IV infu-
sion (Table  7.14), and PD models (Table  7.16) 
are included, allowing simultaneous prediction of 
single- and multiple-dose PK/PD analysis. 
Additionally, an effect compartment [2] can be 
included in the PD analysis. The integration is 
performed using either by Runge-Kutta (4th 
order), Runge-Kutta-Cash-Karp, or Runge-
Kutta-Fehlberg methods [32, 33], with appropri-
ate step size selection. The following is an 
example of a model, and the simulation result is 
shown in Fig. 7.21.

 

Table 7.24  Bootstrap AUC and Cmax and 90% confidence interval estimates

Treatment Scale Parameter Count Mean SD CV% 90% CI lower 90% CI upper
Test Original AUC 500 189.6 12.9 6.8 188.4 190.7

Cmax 500 21.7 3.0 13.7 21.5 22
Natural logarithm AUC 500 5.2 0.1 5.2 5.2

Cmax 500 3.1 0.1 3.1 3.1
Reference Original AUC 500 190.9 13.1 6.9 189.7 192

Cmax 500 21.9 3.1 14.2 21.6 22.2
Natural logarithm AUC 500 5.2 0.1 5.2 5.3

Cmax 500 3.1 0.1 3.1 3.1

Table 7.25  Sample size calculations for a two-period, 
two-sequence, two-treatment crossover BE study for 
alpha (one-sided)  =  0.05, delta  =  0.05, and BE 
margin = 0.8

Power
sigma_w sigma_d 80% 90%
01 0.15 6 8
0.1 0.15 12 14
0.15 0.15 16 22
01 0.23 12 18
0.1 0.23 18 24
0.15 0.23 22 30
01 0.3 20 28
0.1 0.3 24 34
0.15 0.3 30 42
01 0.5 54 74
0.1 0.5 58 80
0.15 0.5 64 88
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For a one-compartment model and the first-
order absorption model shown above, the rate of 
loss of a drug from the stomach is given by

	

dXa

dt
ka Xa= − .

	 (7.32)
The rate of absorption by an apparent first-order 
process and the first-order elimination of a drug 
from the body are given by

	

dX

dt
ka Xa k X= −. .10

	 (7.33)

Xa  =  amount in stomach (initial  =  dose), 
X  =  amount in blood (initial  =  0), X  =  VC, 
ka  =  apparent first-order absorption rate 
constant

k10  =  apparent first-order elimination rate 
constant

V  =  apparent volume of distribution of blood 
compartment

The rate of loss of drug concentration (Ce) 
from the effect compartment is given by

	

dCe

dt

ke X

V
ke Ce= −

0
0

.
.

	 (7.34)
where

ke0  =  rate constant for drug removal from the 
effect compartment

30.2	 �User-Defined Simulation 
Models

This module provides an interface for the flexi-
bility of writing differential equations and their 

Fig. 7.21  PK/PD 
simulation plots using 
the predefined models 
(1-CBM oral/sigmoid 
Emax) based on the 
differential equations (a) 
concentrations in an 
effect compartment 
(Cpe) following multiple 
oral doses and (b) the 
effect vs. effect 
compartment 
concentrations. For 
simulation, parameters 
used were K10 = 0.1 (/
hr), Ka = 1 (/hr), 
Ke0 = 0.5 (/hr), 
Vd/F = 10 (L), EC50 = 3 
(mcg/mL), γ = 2, step 
size = 0.25, 
dose = 100 mg q8h for 
24 hours, and time 
frame = 0 to 48 hours
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integration and visualizing results. The dosing 
routes, such as IV and extravascular, and combi-
nation of these for single and multiple doses can 
be easily included. The following is an example 
of multiple-dose oral and IV infusion for a drug 
with 2-CBM profile (Fig. 7.22).

 

For a two-compartment model and the first-
order absorption shown above, the rate of loss 
from the stomach is given by

	

dXa

dt
ka Xa= − ·

	 (7.35)

The rate of absorption by an apparent first-order 
process and the rate of change of the drug from 
the blood (central) compartment by a first-order 
process are given by

	

dX

dt
ka Xa k X k X k Xt= − − +· · · ·10 12 21

	
(7.36)

The rate of change of drug levels in the tissue 
(peripheral) compartment is given by

	

dXt

dt
k X k Xt= −12 21· ·

	 (7.37)

Xa = amount in stomach
X = amount in blood compartment
Xt = amount in tissue compartment
ka = apparent first-order rate constant
k10  =  apparent first-order elimination rate 

constant
k12 and k21  =  apparent first-order inter-

compartmental distribution rate constants

Fig. 7.22  Simulation of plasma concentrations for oral multiple doses followed by a 3-hour IV infusion q8h dosing
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30.3	 �User-Defined Differential 
Equation Model Optimization

The experimental data can be fitted to a mathe-
matical model using a set of ordinary differential 
equations. The following is an example of a data 
fitted to oral 1-CBM differential equations:

	 dG ka G= − . 	 (7.38)

	
dX ka

G

V
K X= −. .

	 (7.39)

where

G = amount of drug in stomach
ka = first-order rate constant for absorption
X = amount of drug in blood
K = first-order elimination rate constant
V = apparent volume of distribution

The data input and differential equations are 
shown in Fig. 7.23.

The compartment, parameter, constant (for 
infusion input), and compartment to be optimized 
are selected as shown in Fig. 7.24.

Initial value of parameters, their upper and 
lower bound, and dosing information are pro-
vided. The optimization is achieved using either a 
L-BFGS-B [34], Nelder-Mead [14], or 
Levenberg-Marquardt [35] method using appro-
priate weight selection. The parameter estimates, 
their standard errors, and CV% are computed 
(Table 7.26); in addition, observed and predicted 
graphs (Fig. 7.25), residual plots (Fig. 7.26), and 
model diagnostics and iteration results are 
displayed.

31	 �Conclusions

Pharmacokinetic modeling software (PKMP) is a 
web-based commercial program created using 
the open source codes for Java coding language 
and R libraries. The web-based platform allows 

Fig. 7.23  Data input mapping and differential equations
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Fig. 7.25  Observed and predicted data for 1-CBM oral 
data fit using optimization of user-defined differential 
equations. For G compartment data represents amount 

(mg) and for X compartment data is concentration μg/L, 
and time is in hours

Fig. 7.24  Selection of compartment and parameters for differential equation optimization
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Fig. 7.26  Residual plots for 1-CBM oral data fit using optimization of user-defined differential equations
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easy and secure access to the program using any 
Internet browser, and the program is independent 
of operating systems, such as MacOS or 
Windows. The program has been extensively 
tested for validation and verification of every 
module for its quality and functionality. 
Pharmacokinetic, pharmacodynamic, statistical 
analysis, dissolution, IVIVC, simulation, model-
ing, and reporting are some of its main function-
alities, allowing for a wide range of data analyses 
to support drug product evaluation and develop-
ment during different phases of drug develop-
ment. The program can be accessed at https://
aplanalytics.com/.
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